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Abstract

We present node-centric approaches to hybrid routing
for ad hoc networks in which normal nodes are distin-
guished from special nodes, called netmarks, hosting popu-
lar network services or functioning as points of attachment
to the Internet. With node-centric hybrid routing, netmarks
force common nodes to maintain routing information for
them by either sending routing updates proactively, or by
requiring nodes to maintain on-demand routing entries to-
wards them for extended periods of time. Routes between
peer nodes are set up on-demand. Two node-centric routing
solutions are presented based on partial link-state informa-
tion. Simulation results using ns2 show that maintaining
table-driven routing for netmarks and on-demand routing
for common nodes performs much better than purely on-
demand routing protocols based on distance vectors, path
information, or link-state information.

1. Introduction

In table-driven or proactive routing protocols for ad-hoc
networks, control overhead increases with the size of the
network and becomes redundant if the number of commu-
nicating peers is much less than the total number of nodes
in the network. To address the scaling problem of table-
driven routing, on-demand routing protocols have been pro-
posed for ad hoc networks. Nodes running such protocols
set up and maintain routes to destinations only if they are
active recipients of data packets and generate network-wide
queries to establish routes to destinations. However, when
only a few nodes of the ad hoc network must act as sources
and sinks of data packets, and such choices are very stable,
maintaining routing information to such destinations on de-
mand and treating those nodes as any other node may not
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be as attractive as a proactive approach. This motivates the
interest in a hybrid approach to routing in ad hoc networks.

The Zone Routing Protocol (ZRP) [3] constitutes a
framework for hybrid routing in ad hoc networks. ZRP
adapts a hierarchical-routing approach based on clusters
(called zones) and maintains routes proactively to destina-
tions inside a zone, and on-demand routing is used to es-
tablish routing information spanning more than one zone.
In this chapter, we advocate a different approach to hybrid
routing that is node centric rather than based on zones or
areas of the network.

The rationale for a node-centric approach to hybrid rout-
ing is that there are many cases in which certain nodes in an
ad hoc network need to host special services to other nodes
in the ad hoc network, specially when the ad hoc network
is a wireless extension of the Internet (e.g., DNS services,
Internet access, web proxies). We call those nodes that sup-
port special services for the rest of the nodes (and there-
fore that have a high likelihood of communicating with the
rest of the ad hoc network)netmarks. The netmark can be
fixed as well as mobile, depending on the application sce-
nario. Under a node-centric hybrid routing approach, paths
are constantly maintained between nodes and the netmarks.
The forward and reverse paths between netmarks and nodes
are maintained constantly. The paths between normal nodes
are set up on demand.

Section 2 introduces two approaches to node-centric hy-
brid routing, in which a netmark is distinguished from nor-
mal nodes (which can be done through addressing or by
having an explicit tagging mechanism). In one approach, a
netmark forces the rest of the nodes to maintain their routes
to it for long periods of time once they acquire such routes.
This amounts to extending the caching of netmark routing
information. In another approach, a netmark uses proactive
routing updates to push its routing entry into the routing
tables of the rest of the nodes in the ad hoc network. To
describe our approaches, we assume that the nodes in the
ad hoc network form a subnet and each node has a unique
identifier, by which routing protocols and other applications
can identify it. By looking at the address of the destination
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of any IP packet, any node can determine whether or not the
packet is meant for a node outside the subnet.

Section 3 shows how an on-demand routing protocol can
be modified to adopt the node-centric approaches proposed
in Section 2. When multiple netmarks are present in the
network, the way in which nodes affiliate themselves to net-
marks has a direct impact on performance of the routing
protocols. How to handle multiple netmarks is addressed
elsewhere [9].

Section 4 presents the results of our performance com-
parison of node-centric hybrid routing with purely on-
demand routing protocols. The results of our simulation
experiments illustrate the benefits of the node-centric hy-
brid routing approach.

2. Node Centric Hybrid Routing

2.1. Hybrid Routing by Extended Caching

In pure on-demand routing protocols, routers set up paths
to other nodes based on the existence of flows with them.
Routes are cached once they are obtained using a route dis-
covery mechanism and they are modified when they be-
come invalid due to link failures. Among the on-demand
routing protocols proposed in the literature, the basic differ-
ence is in how routes are cached and invalidated, and how
route changes are reported to other nodes. Extending an on-
demand routing protocol to support hybrid routing through
extended caching of the routes to the netmarks entails the
following two main changes to a pure on-demand protocol:

� A node sends a route request for a netmark whenever
it looses all routes to it independently of its traffic to
the netmark.

� Any node generates a route error whenever it detects
the loss of a route to a netmark independently of the
traffic for the netmarks.

We now summarize how extended caching can be ap-
plied to specific on-demand routing protocols, namely
AODV, DSR and SOAR.

The ad-hoc on demand distance vector (AODV) proto-
col is based on distance vectors and uses sequence num-
bers to prevent temporary and permanent loops. AODV
supports incremental routing because no routing table loops
can be formed. Route Requests (RREQs) are generated by
the sources of data packets and forwarded by intermediate
nodes. When RREQs are forwarded, reverse routes for the
source of the RREQ are installed. Route replies (RREPs)
can be sent by the destination or an intermediate node with
an unexpired route entry for the destination. The RREP
message initiates the creation of a path for the destination
in intermediate nodes that forward the RREP back to the

sender of the RREQ. Each routing table entry has an expi-
ration period (active route timeout) associated with it.

The specification of AODV [7] states that AODV can use
the periodic network-layer Hellos or link-layer notifications
for determining connectivity with neighbors. When a node
detects that its path to a destination has been broken due
to a failed link, it sends a route error (RERR) packet to its
active predecessors for that destination, i.e. those neighbors
known to use the node to forward packets to the destination.

AODV can easily incorporate the idea of extended
caching by increasing the expiration period of the route for
the netmarks to a very high value or infinity. Every time the
paths to a netmark fail due to link failures, the nodes can
send RERRs to active predecessors, which travel upstream.
When a node looses its route for a netmark, it starts the route
discovery mechanism, irrespective of the presence of traffic
for netmarks. Royer et al. [10] have suggested a similar for-
eign agent discovery mechanism using AODV where routes
for foreign agents are discovered irrespective of the pres-
ence of traffic. However, routes for foreign agents are not
maintained differently from the routes to common nodes.

The dynamic source routing (DSR) protocol uses source
routes to forward data packets and exchanges routes in the
form of paths. Routes are stored in a cache, until an indi-
cation that a link in the route is broken is obtained through
route error (RERR) messages or link-layer notifications. A
route discovery cycle is started by a source if it looses all
routes to the required destination. DSR can determine on
its own if a link is broken by doing multiple retransmis-
sions, or can depend on the link layer for link-failure noti-
fications during packet transmission failures. Route errors
containing information about failed links are sent towards
the source of data packets. In DSR, if a node detects the
route failure for a netmark while forwarding data packets
for a common node, then it does not know how to propa-
gate RERR information for the netmark. Hence, generating
route errors independently of traffic to netmarks is not trivial
in DSR and flooding RERRs would be expensive. RREQs
sent in response to route failures to netmarks cannot be used
to replace the functionality of RERRs, because RREQs do
not have the information about failed routes. However as in
AODV, anytime the route to a netmark is broken, the basic
route discovery mechanism of DSR can be easily modified
to send RREQs for netmarks, irrespective of the presence of
traffic for them.

The source-tree on demand adaptive routing (SOAR) [8]
protocol is a link-state routing protocol in which routers ex-
change minimal source trees in their control packets. A
minimal source tree consists of the state of the links along
the paths used by the routers to reach active (important)
destinations. Important destinations are active receivers, re-
lays or possible relays. Each router uses the minimal source
tree of its neighbors and its outgoing links to get the partial



topology of the network. Routing table entries for known
destinations are computed using a path selection algorithm
on the partial topology and the data packets are forwarded
hop-by-hop according to the routing entries. Links are val-
idated using sequence numbers. SOAR uses queries and
replies to create routes to unknown destinations. Update
packets containing modified minimal source trees are gen-
erated when a node decides that its neighbors need to be
updated to prevent erroneous forwarding or the formation
of routing-table loops in the paths to important destinations.

The notion ofimportant nodein SOAR can be general-
ized to incorporate the concept of netmarks by always tag-
ging netmarks asimportant, while the rest of the nodes be-
come important on the basis of the traffic flowing to those
nodes. Another variation of this approach is that netmarks
would be considered important for longer periods of time
than common nodes. Therefore, depending on the level
of importance of a particular node, paths to nodes remain
fresh for different time-spans. Hence, a simple modification
to the basic mechanism of routing information exchange in
SOAR enables incorporating the idea of extended caching
of routes to netmarks. We call this modification netmark-
aware on-demand link state routing (NOLR).

2.2. Hybrid Routing with Proactive Routes

The second approach to hybrid routing consists of main-
taining proactive routes for the netmarks, while on-demand
routes are used for other nodes. The modifications required
for any on-demand routing protocol to adopt this approach
are the following:

1. Adding a route for a netmark for the first time neces-
sitates sending updates to neighbors, so that they can
also set up new paths to the netmarks.

2. Depending on the protocol, route errors, route re-
quests, or route updates are generated for netmarks,
independently of the traffic to them.

3. A netmark can advertise its presence by sending Hel-
los to enable new neighbors to set up paths to it, and
to find out whether the netmark is still reachable with-
out having to depend on link-layer notifications. This
enables paths to netmarks to be more proactive, rather
than being data-packet driven.

Next we summarize how DSR, AODV or SOAR can be
changed to incorporate the above concepts of hybrid rout-
ing. Implementing a network-layer Hello mechanism at the
netmarks is easy in any of the three protocols.

As mentioned earlier, AODV uses destination sequence
numbers to validate routes to destinations. Hellos sent by
the netmarks in AODV must contain the highest sequence

number for the netmarks, so that the receiving node can in-
stall new direct routes for the netmarks. Given that DSR
sends RERRs only to the source of data packets when there
is a failure of packet transmissions along a particular link,
adding a Hello mechanism will not help DSR, because
in such a case the protocol does not have a mechanism
to decide how to propagate information about the loss of
netmark-routes to other nodes in the network. However, if
a node keeps track of the neighbors (i.e. predecessors) that
use it for data delivery to netmarks for the lastpre-defined
amount of time, route failures to netmarks can be recur-
sively reported to other nodes through the predecessors. In-
corporating the Hello mechanism benefits both AODV and
SOAR, because the paths to netmarks remain more up to
date.

To propagate new route information for netmarks in
SOAR requires only a change in the rules for sending an
update. Rather than only sending anupdate for a desti-
nation when the path cost to it increases, updates are also
sent when a route for a new netmark is discovered. Un-
like SOAR, both AODV and DSR need the introduction of
a new type of control packet that propagates route updates
for netmarks to all the nodes in the network when a route to
a netmark is first discovered.

3 Hybrid Routing Using SOAR

We have chosen SOAR as the basic routing protocol to
illustrate the benefits of node-centric hybrid routing over
on-demand routing because SOAR has been shown to be
more efficient than DSR [8] and the results presented in
Sec. 4 show that SOAR outperforms AODV. Furthermore,
the modifications needed in SOAR to adopt hybrid routing
are much simpler than the modifications required in DSR
and AODV.
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Figure 1. Differences in control information between
SOAR and NEST/NOLR

Extended caching of netmarks can be adopted in SOAR
by considering paths to different destinations as important
for different periods of time. This modification of SOAR
is called NOLR (netmark-aware on-demand link state rout-
ing).



The Netmark Enhanced Source Tree (NEST) routing
protocol adopts the routing mechanisms of SOAR to main-
tain proactive routes for netmarks and on-demand routes for
other nodes in the network. We provide the details of NEST
in the rest of this section.

NEST and SOAR both exchange link-state information
in the form of the minimal source trees, that contain the state
of the links to reach important destinations in the network.
However, there is a slight difference in the actual contents.
In NEST, the advertised minimal source tree always con-
tains a path to the netmark. Fig. 1 illustrates the difference
in the control message advertised by nodee. The source tree
at nodee (Fig. 1(a)) is the tree consisting of links that node
e uses to reach the netmark and other nodes in the network.
Nodee advertises a portion of this complete source tree to
its neighbors, which is called theminimalsource tree. For
SOAR, theminimalsource tree would only consist of links
needed to reach nodes with which it has active flows. In
this example, nodee has active flow with nodef , the min-
imal source tree advertised by nodee would be as shown
in Fig. 1(b). In NEST, even if nodee does not have active
communication with the netmark, it advertises links in the
path to it (as shown in Fig. 1(c)).

3.1. Netmark Discovery

In NEST, netmarks send Hello packets to inform their
neighbors of their presence. This same effect is achieved by
sending beacons at the MAC layer. At the routing layer, if
the node does not receive the Hello packet for some prede-
fined interval of time, then it can declare that the link to its
neighbor is down. The link layer can also notify the routing
layer about link failures when it cannot deliver data packets.

When a node has a new entry for the netmark, it informs
its neighbors about the new route using an update. There-
fore, every node in the network eventually knows about at
least one path to the netmark. Updates in NEST are broad-
cast packets and hence unreliable. If updates are lost, some
nodes may not know about the route to the netmark. Fur-
thermore, when a node comes up, it is not aware of net-
marks. Under such circumstances, a node must initiate a
query.

Another important issue regarding tagging some nodes
asnetmarksis how to disseminate the information about the
nodes with netmark status. This can be achieved in one of
the following ways:

� All common nodes can be pre-configured statically
with the host addresses of the netmarks. This approach
is beneficial if some nodes e.g., nodes hosting DNS or
proxy services, maintain statically their netmark status
and all common nodes know about the netmarks.

� If the assignment of netmark status to nodes is not

fixed, then the new netmarks can advertise their status
by sending Hello Packets and all the nodes can mark
the netmarks in the minimal source trees while sending
updates. Marking the netmarks means a special flag is
attached in the minimal source trees to links with net-
marks as tails. When a node ceases to be a netmark,
it can notify all nodes that it is no longer a netmark
by flooding. This situation can happen in relief sce-
narios or battlefields, where the group leaderships may
change over time.

3.2. Maintaining Paths in NEST
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Figure 2. Setting up of paths between netmarks and other
nodes

Fig. 2 illustrates how the forward and reverse paths be-
tween a common node and netmark are set up. In Fig. 2,
when nodec learns of the netmark, it advertises the net-
mark in its source tree and hence nodeb knows about the
netmark and neighborc. When nodeb advertises its own
tree, it reports the information about nodesb; c; and the
netmark, i.e., the path to netmark consisting of the in-
termediate nodesb; c. Similarly, nodeb learns about an
alternate path[b; d; e; netmark] from noded, but nodeb
chooses the path through nodec because it has a smaller
length. If link (b; c) fails, then nodeb can choose the alter-
nate path to the netmark through noded. The downstream
nodes from a mobile node towards the netmark may only
know about the upstream predecessor and not know about
all upstream nodes (e.g., when nodeb advertises its source
tree, it may not advertise link to nodea because nodea is
not an important destination, in such a case, nodec knows
only about nodeb, but not about nodea). Similarly, the net-
mark may know about nodec, but not about nodesa and
b. In order to send packets to nodea, the netmark would
have to send aquery for nodea in such a case. To prevent
a query to be initiated from the netmark for every mobile



node in the network, the following mechanism is adopted
to set up the reverse paths from a netmark to any common
node without introducing any extra control overhead.

When data packets start flowing from a node towards the
netmark, the intermediate nodes along the path towards the
netmark can set up paths towards the source of the data
packets. For example, when the data packet from node
a reaches nodec and finds the destination is a netmark,
then nodec adds an entry in its routing table for nodea as
[dest = a; nexthop = c]. Similarly, the netmark keeps
a routing-table entry[dest = a; nexthop = c]. These
routing entries expire after aSoftStateInterval. When
link (b; c) breaks, data packets are forwarded along the
path[a; b; d; e; netmark] and the netmark replaces the en-
try [a; c] with [a; e] when the data packets arrive from node
e. Similarly, when nodesd ande forward packets, they set
up soft-state entries for destinationa. Nodec removes entry
[a; b] after theSoftStateIntervaldue to the absence of any
data packets from nodea towards the netmark. Routes for
different netmarks from the same node can cut same inter-
mediate nodes. In that case, at an intermediate node, vari-
ations of the path traced by the data packets with the same
source but with different destinations can lead to route flap-
ping. Therefore, to prevent route flapping, the soft-state en-
try is not modified till some pre-defined time has elapsed.

The reverse routes are set up towards the source based on
the flow of data packets only if the destination of the data
packets is a netmark. This is because each node maintains
up-to-date paths only to netmarks. Hence, given that the
paths from a node to any other node may not be current, the
reverse path between any two common nodes would lead to
data packet losses. In steady state, the reverse route from a
netmark is essentially the same as the forward path. There-
fore, if the forward routes to the netmarks are correct, the
reverse routes are going to be also correct.

In the absence of a flow of data packets from a common
node to the netmark, the netmark must resort to queries to
find paths to the destinations. The number of these queries
is reduced drastically if the flow between the netmark and
the node is mainly bi-directional e.g. intcp like flows.

When a node receives a packet from the application layer
and it is meant for a node in the ad hoc network, it forwards
it to the next hop as indicated in the routing table entry, pro-
vided that the node has a route to the destination. All nodes
can determine when the packets are meant for a node out-
side the ad hoc network by looking at the IP address of the
destination, and forward such packets towards the netmark.

4. Performance Evaluation

4.1. Simulation Model

We compare the performance of node-centric routing
approaches NEST and NOLR with the performance of
pure on-demand routing protocols SOAR [8], DSR [5]
and AODV [7] using the ns2 network simulator. For
DSR, we used the code available with the ns2 simula-
tor [4]. For AODV, we used the code available from the
implementation of Marina [6] and the constants provided
with the code. SOAR has been implemented according
to the specifications provided by Roy and Garcia-Luna-
Aceves [8]. NOLR is the modification of SOAR with ex-
tended caching of routing information for netmarks. NEST
uses the same constants used in SOAR [8] along with three
additional constants: HelloInterval, DeadTime Interval
and SoftStateInterval. HelloInterval (three secs) is the in-
terval between sending of two consecutive Hello packets by
the netmark. DeadTime Interval (nine secs) is the time in-
terval for which if a node does not receive any packet from a
neighboring netmark, the link to the netmark is considered
to be down. When a broadcast control packet is sent, the
netmark can defer the next transmission of Hello packet for
a time equal to the HelloInterval. SoftStateInterval (one
sec) is the maximum time a soft-state routing entry stays in
the routing table, without being refreshed.

DSR, AODV, SOAR, NOLR and NEST do not depend
on the link layer for neighbor discovery. All protocols use
link-layer indications about link-failures when data packets
cannot be delivered along particular links. Use of link-layer
information for discovering neighbors can significantly im-
prove the performance of routing-layer protocols. How-
ever, because our objective is to test the routing protocols
as stand-alone protocols, we have not considered the effects
of MAC layer interactions on the routing protocols’ perfor-
mance and promiscuous mode of operation has been dis-
abled. The link layer protocol used is the IEEE802.11 dis-
tributed co-ordination function (DCF) for wireless LANs,
which uses a RTS/CTS/DATA/ACK pattern for all unicast
packets and DATA packets for all broadcast packets. The
physical layer approximates a 2 Mbps DSSS radio interface.
The radio range of the radio is 250m. We assume a netmark
does not change itsnetmarkstatus during the entire length
of the simulation. Nodal movement occurs according to the
random waypoint model introduced in [1]. The speed of a
mobile node during its movement is uniformly distributed
between 0 and 20m/sec.

We use two traffic models for performance evaluation,
which we call (a) the INTNET model and (b) the RELIEF
model. These traffic models are more realistic compared to
the traffic models used in prior analyses [1], [2], in which
continuous CBR traffic flows exist between randomly cho-



sen nodes making the traffic pattern more or less uniform
throughout the network.

The INTNET model is similar to the scenario of using
ad hoc networks as wireless extensions of the Internet. The
communication is mainly from each of the common nodes
towards the netmark hosting commonly-accessed servers or
acting as access point to the Internet. The number of flows
between mobile nodes only is much less compared to the
number of flows between nodes and netmark. The traffic
pattern is based on a FLOWOFF/ON model, with the pa-
rameters as given in Table 1.

During the FLOWON period, there existscbr traffic and
there is no packet flow during the FLOWOFF period. The
motivation behind simulating the FLOWOFF/ON model,
rather than a model in which the flows are on continu-
ously, is that Web traffic consists of FLOWON/OFF pe-
riods, where the OFF periods correspond to the user’s think
time, and the ON period represents download time. In our
experiments with the INTNET model, there are four random
flows between any two randomly selected common nodes at
any time. The duration of these flows is always 200 secs and
all the flows are bi-directional in nature.

The RELIEF traffic model is used to simulate traffic in
relief or battlefield scenarios, where the group members re-
port to the group leaders while the group members also ex-
change information. The group leader is the netmark con-
tacted more frequently compared to other nodes. There are
four random flows between common nodes and there are at
most six random flows from a common node towards the
netmark. We divided the set of common nodes into five
groups and only one member in the group can talk at a
time with the netmark. The traffic pattern per group is also
like the FLOW OFF/ON model. The packet arrivals during
FLOW ON period follow an interrupted deterministic pro-
cess (IDP) like voice traffic. The ON/OFF periods during
a FLOW ON period correspond to talkspurt/silence periods
of the speaker. The parameters for the RELIEF model are
as given in Table 1.

Constants RELIEF Model INTNET model
FLOW ON period uniform (30,150) secs Uniform Dist (30,120) secs
FLOW OFF period uniform (10, 20) Uniform Dist (50, 120) secs
Packet Size 66 bytes 66 bytes
Rate 17 packets/sec (9kbps) 2, 3, 4 ,5 packets/sec per node
talkspurt 350ms
silence 650ms

Table 1. Constants for Flows in RELIEF and INTNET
models

We evaluate the routing protocols based on packet deliv-
ery ratio, control packet overhead, average hop count, end-
to-end delay, and the number of queries and replies sent by
each protocol.

4.2. Experimental Scenario 1

The first scenario consists of a network of 31 nodes mov-
ing over a rectangular area of 1000mx500m. There is a
single fixed netmark in the system, which is placed at co-
ordinates (500, 250). The pause time of other nodes is
uniformly distributed between zero and a maximum value,
which can be one of 0, 15, 30, 45, 60, 120 and 300 seconds.
The simulation length is 600 secs, while the results are pre-
sented on the basis of at least 3 simulation runs, where each
run is with the same INTNET traffic model but with a differ-
ent randomly generated mobility scenario (this is also true
for subsequent experiments). Performance results are pre-
sented for a load of five packets/sec.

Most of the results for AODV, SOAR and DSR con-
form to the results published previously for those proto-
cols [2], [8] and [1]. As shown in Fig. 3(b), AODV’s
control overhead is found to be significantly higher than
DSR’s or SOAR’s, except for the high mobility scenar-
ios. AODV’s control overhead consists primarily of queries
(Fig. 3(d)), while the control overhead of DSR consists
mainly of replies(Fig. 3(e)). This is because AODV resorts
to the route discovery mechanism more often than DSR,
while DSR sends multiple replies to queries. Contrary to
the findings in [2], [1] an interesting result is that AODV’s
control overhead in highly mobile scenarios is lower than
DSR’s. Because each node in the INTNET model sends
and forwards packets for a netmark, the number of cached
entries for the netmark is comparatively higher in DSR than
in scenarios where the traffic pattern is uniform. That ef-
fectively leads to significantly higher number of cached
replies (many of which contain stale routes) which amount
to higher control overhead in DSR than in AODV. In low
mobility scenarios in which path information becomes stale
less often, the effect of injecting old routes due to multiple
replies is much smaller.

SOAR produces much fewer control packets compared
to DSR or AODV under all mobility scenarios. The rea-
son behind this is that SOAR resorts to fewer route discov-
ery queries than AODV or DSR, because of the redundancy
in the exchanged routing information in the control pack-
ets specifying minimal source trees, and because of the use
of mostly local updates to solve path breakage, rather than
sending route error messages to the source of data packets.
Because SOAR and DSR can use stale information, SOAR
and DSR deliver slightly fewer data packets compared to
AODV under high mobility. The performance degradation
is less in SOAR compared to DSR, because SOAR uses
sequence numbers to validate link�state information and
DSR uses explicit route error messages to invalidate link
information.

The performance of NOLR was found to be almost iden-
tical to SOAR’s. Accordingly, for clarity, Fig. 3 does not
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Figure 3. Performance of NEST, SOAR, DSR, AODV in a 31node Network at load per node of 5 packets/sec with fixed netmark

show the results obtained for NOLR. Unlike SOAR, NOLR
maintains routing information for netmarks for longer pe-
riods of time compared to the time for maintaining infor-
mation for other nodes. The reason why NOLR and SOAR
exhibit the same performance in this scenario is that each
node either sends or forwards packets for the netmark the
vast majority of time. Therefore, any node in SOAR ends
up treating the netmark asimportant throughout the simu-
lation.

Under all scenarios, NEST performs much better com-
pared to all purely on-demand routing protocols, both
in terms of data delivery and control overhead. NEST
(Fig. 3(a)) delivers more packets compared to other proto-
cols. In NEST each node always maintains correct paths
to the netmark. Therefore, NEST looses much fewer data
packets than AODV, even though AODV attempts to avoid
using stale routing information. SOAR maintains informa-
tion for netmarks for significant periods of time; however,
NEST paths are more accurate, because the netmark adver-
tises itself periodically to force its routing information in
other nodes and nodes using NEST update their neighbors
when they first discover routes to netmarks. This conclu-
sion is validated by the results of Fig. 3(f), in which we see
that more updates are needed in SOAR compared to NEST
to purge stale link-state information. On an average, NEST
produces around 30% fewer updates than SOAR. We also

find that NEST (Fig. 3(f)) produces fewer queries compared
to SOAR, which leads to a reduction of replies in NEST
(Fig. 3(e)). Queries are still sent by NEST for discovering
routes on-demand with common nodes and for probing the
netmark when the netmark becomes unreachable due to net-
work partitions. We also see from Fig. 3(c) that the average
hop count in NEST is the smallest, because NEST detects
the presence of netmarks much faster.

4.3. Experimental Scenario 2

The second scenario focuses on the effect of netmark
mobility. It consists of a network of 30 nodes and one
netmark with common nodes moving at a speed uniformly
distributed between 5m/s and 20m/s. Pause times are uni-
formly distributed between 0secs and 30secs. Three dif-
ferent movement scenarios for the netmark are analyzed
while keeping the mobility pattern for other nodes the same.
The netmark in these scenarios is either static (models),
mobile (modelm, the netmark moves over a rectangular
area (250,250)) or very mobile (modelvm, the netmark can
move over the entire area (1000,500)). Because most of the
traffic is towards the netmark, the routing protocols would
be more stressed to maintain routes as the mobility of the
netmark increases. The netmark moves with a speed simi-
lar to the speed of common nodes with pause time between
10 and 30 secs. We use the INTNET and RELIEF traffic



models, which are indicated as REL and INT in Fig. 4. Ac-
cordingly, a static netmark model with INTNET traffic pat-
tern is indicated assINT , while avm model with RELIEF
traffic pattern is represented asvmREL.

For this scenario, the results for AODV are significantly
worse than for the rest of the protocols. Accordingly, the re-
sults for AODV are not shown in order to show in more de-
tails the performance differences among the other protocols.
From Fig. 4 we see that there is no appreciable difference in
the performance of the routing protocols, NEST, SOAR and
DSR for them ands model because of the limited mobil-
ity of the netmark inm model. The performance of all the
routing protocols suffers when the netmark becomes totally
mobile. From Fig. 4, we find that the INTNET model pro-
duces more stress on the routing protocols than the RELIEF
model does, with DSR being affected the most.
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Figure 4. Performance in a 31node Network with varying
mobility models for netmark and two different traffic mod-
els

From Fig. 4(a), we see that SOAR and NEST deliver on
an average the same number of data packets in both traffic
models. DSR’s percentage data delivery is 4%-7% smaller
than the data delivery achieved by SOAR and NEST, with
the performance becoming worse with higher mobility of
the netmarks. This is because of packet losses due to un-
availability of routes to forward data packets at intermedi-
ate routers, which implies that DSR suffers due to stale path
information.

DSR’s control overhead is comparable to that of SOAR
or NEST for thesREL ormREL models (Fig. 4(b)). DSR
sends significantly more control packets for the INTNET
model, where DSR utilizes redundancy in routing informa-
tion less efficiently than SOAR or NEST.

SOAR and NEST have similar control overhead for the
RELIEF model, though in the INTNET model NEST out-
performs SOAR and DSR. This is because the RELIEF
model has fewer flows (around six) towards the netmark
compared to the INTNET model, in which theoretically any
node can communicate any time with the netmark. When
the number of flows is smaller, fewer links are used for ac-
tive data delivery. Because detections of link failures are

triggered only by the failure of transmission of data pack-
ets, with fewer flows more links remain stale in the topology
table. Therefore, if the number of flows between common
nodes is the same as the number of flows between netmarks
and common nodes, the Hello mechanism does not improve
the condition because SOAR and NEST require almost the
same number of updates to purge wrong routing informa-
tion. This indicates that the node-centric approach to proac-
tive route maintenance can improve the performance of the
network, however the degree of performance improvement
depends on the amount of communication between com-
mon nodes and the netmark.

We also observe that netmark mobility does not impact
the performance of NEST more than the performance of
purely on-demand approaches, which could have been an
argument for using an on-demand approach rather than a
hybrid approach when netmarks are very mobile.

Because voice traffic is delay sensitive, we analyzed the
delay performance for each of the routing protocols (Ta-
ble 2) for the RELIEF traffic model, where voice traffic is
used. The results presented are for a randomly chosen run,
so as not to average out the high frequency components of
individual runs. This is important for voice traffic perfor-
mance, because worst-case performance results are required
for quality assurance. Following conclusions can be drawn
from the data available from Table 2:

� Range (the difference between minimum and maxi-
mum delay) is significantly high under all cases. This
is because the network becomes partitioned, and the
node discovery mechanism is not very fast in on-
demand routing protocols and can become really slow
as the timeouts for resending queries increases non-
linearly. The range for DSR for Mobile Relief Model
(Table 2) is as high as 49 secs. Though NEST main-
tains proactive routes with the netmark, the range for
NEST is also high because it uses on-demand routes to
common nodes.

� As expected, there is an increase in delay when the net-
mark is more mobile, because nodes have more stale
routes.

� NEST has better delay performance than SOAR in
terms of percentile values because NEST has fewer
queries and the paths tend to be more up to date,
thereby spending less time queueing packets either at
the routing layer or the link layer. This indicates that
the hybrid routing approach helps to reduce the end-
to-end delay of data packets.

5. Conclusions

We have presented node-centric approaches to hybrid
routing for ad hoc networks that distinguish between nor-



Table 2. End to End Delay Distribution of the Voice Traffic For Different Netmark Mobility Models
Static Relief Model (sREL) Mobil e Relief Model (mREL) Very Mobile Relief Model (vmREL)

Percentile NEST (s) SOAR (s) DSR (s) NEST (s) SOAR (s) DSR (s) NEST (s) SOAR (s) DSR (s)
90 0.0091 0.0110 0.0087 0.0101 0.0151 0.0121 0.0611 0.0 834 0.0986
95 0.1136 0.1503 0.0734 0.1067 0.1768 0.0917 0.3222 0. 3930 0.3695
97 0.2682 0.3301 0.2226 0.2150 0.3799 0.2087 0.6832 0.8593 0.6371

range 19.89 13.7335 19.329 2.5041 14.4443 49.083 17.28 23.4054 13.119

mal nodes and special nodes called netmarks, which host
popular network services or function as points of attach-
ment to the Internet. With node-centric hybrid routing, net-
marks force other common nodes to maintain routing in-
formation for them by either advertising their routing infor-
mation as in table-driven routing protocols, or by requiring
nodes to maintain routing entries towards them for extended
periods of time. Routes between peer nodes are set up on-
demand. We have evaluated the changes needed to incorpo-
rate node-centric hybrid routing in the basic mechanism of
routing for some pure on-demand routing protocols, namely
AODV, DSR and SOAR and compared the performance of
AODV, DSR and SOAR with the hybrid approaches, NEST
and NOLR (which have been adapted from SOAR) using
ns2.

On the basis of ns2 simulations, we have found that, if
a node in the ad hoc network acts as a source or relay of
data packets for significant portion of its lifetime, the bene-
fit of extending caching information in a purely on-demand
routing protocol is not noticeable. However, maintaining
proactive routes as in NEST offers better performance than
any on-demand routing protocol, both in terms of data de-
livery and control packet overhead when the traffic flow is
mostly from common nodes towards the netmark. We have
also found that the performance of NEST is not affected by
the mobility of netmarks.
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